An Extension to $B M O$ Functions of Some Product Properties of Hilbert Transforms

C. Carton-Lebrun
Université de [Etat à Mons, B-7000 Mons, Belgium
Communicated by P. L. Butzer
Received December 14, 1984

Abstract

Let $b \in B M O, f \in L^{p}, 1<p<\infty, H^{\prime} b$ denote the dual Hilbert transform of b defined on $B M O$ according to the $H^{1}-B M O$ duality and H be the Hilbert transform defined as the pointwise limit almost everywhere of appropriate truncated integrals. We prove that $H^{\prime} b \cdot H f-b f=H(b H f)+H\left(f H^{\prime} b\right)$ a.e. The proof uses distributional convolutions with $v p(1 / x)$ and a result of R. R. Coifman, R. Rochberg, and G. Weiss on the L^{p}-boundedness of some commutators. 1987 Academic Press, Inc.

1. Notation

We consider real valued functions. The symbol H denotes the Hilbert transform defined as the following pointwise limit a.e.:

$$
H F(x)=\lim _{i \rightarrow 0, r \rightarrow \alpha} \int_{0<i<k \cdot t \mid<r} \frac{F(t)}{\pi(x-t)} d t .
$$

The dual Hilbert transform on $B M O$ is denoted by H^{\prime}; thus,

$$
\left\langle H^{\prime} b, h\right\rangle=-\langle b, H h\rangle \quad \forall b \in B M O, \quad \forall h \in H^{1} .
$$

As in [4], the space $\left(1+x^{2}\right)^{1 / 2} \mathscr{D}_{L^{\prime}}^{\prime}=\mathscr{D}_{L^{1}}^{\prime}+x \mathscr{D}_{L^{\prime}}^{\prime}$ is the set of all distributions T such that $\left(1+x^{2}\right)^{-1 / 2} T \in \mathscr{D}_{L^{\prime}}^{\prime}$ or, what is equivalent, the set of all distributions of the form $T=T_{1}+x T_{2}$ with $T_{1} \in \mathscr{D}_{L^{\prime}}^{\prime}, T_{2} \in \mathscr{D}_{L^{1}}^{\prime}$. The topology on this space is defined according to [4] also, i.e., T is said to converge to zero in $\left(1+x^{2}\right)^{1 / 2} \mathscr{D}_{L^{1}}^{\prime}$ if $\left(1+x^{2}\right)^{-1 / 2} T$ converges to zero in $\mathscr{D}_{L^{1}}$.

For $T \in \mathscr{D}_{L^{1}}^{\prime}+x \mathscr{D}_{L^{1}}^{\prime}$, we also use the convolution $T * v p(1 / \pi x)$ as the latter is defined in [4], i.e., for every $\varphi \in \mathscr{P}$,

$$
\left\langle T * v p \frac{1}{\pi x}, \varphi\right\rangle=-\left\langle\left(1+x^{2}\right)^{-1 / 2} T,\left(1+x^{2}\right)^{1 / 2}\left(v p \frac{1}{\pi x} * \varphi\right)\right\rangle
$$

The operator $\mathscr{H}: T \mapsto T * v p(1 / \pi x)$ is continuous from $\mathscr{D}_{L^{1}}^{\prime}+x \mathscr{D}_{L^{1}}^{\prime}$ into \mathscr{S}^{\prime}
and coincides with the usual Hilbert transform on $L^{p}, 1<p<x$ [4]. Moreover, it coincides with the Hilbert transform on H^{1} too, since, for every $\varphi \in \mathscr{S}$ and $f \in H^{\prime}$,

$$
\begin{aligned}
w_{\mu}\langle\mathscr{H} f, \varphi\rangle_{\mathscr{F}} & =\left\langle v p \frac{1}{\pi x} * f, \varphi\right\rangle_{\mathscr{\prime}}=-{ }_{I^{\prime}}\langle f, H \varphi\rangle_{L} \\
& =(f * H \check{\varphi})(o)=(H f * \check{\varphi})(o)=\langle H f, \varphi\rangle
\end{aligned}
$$

where $\check{\varphi}(t)=\varphi(-t)$ and the third equality results from [1], Proposition 8.2.3.

It is known that $B M O$ functions do not necessarily belong to $\mathscr{D}_{L^{1}}{ }^{1}+x_{\mathscr{D}_{L^{1}}^{\prime}}$ (for example, sign x does not). This justifies the choice of a distinct notation for the dual Hilbert transform H^{\prime} on $B M O$ and the above distributional one.

Besides, the multiplication operator by f is denoted by $M(f)$ and the commutator of A, B by $[A, B]=A B-B A$. The following abbreviations are used also:

$$
\begin{aligned}
& w L^{1} \text { instead of }\left(1+x^{2}\right)^{1 / 2} L^{1}=L^{1}\left(\left(1+x^{2}\right)^{-1 / 2} d x\right), \\
& w^{-1} \mathscr{B} \text { to denote }\left\{g \in C^{\infty}: \sup _{\mathbb{R}}\left[\left(1+x^{2}\right)^{1 / 2}\left|D^{K} g(x)\right|\right]<\infty, \forall K \in \mathbb{N}\right\}, \\
& L_{c}^{p} \text { to denote the set of all } L^{p} \text {-functions with compact support. }
\end{aligned}
$$

2. Product Properties

2.1. Theorem. If $b \in B M O, f \in L^{p}, 1<p<\infty$, then the following identity holds almost everywhere:

$$
\begin{equation*}
H^{\prime} b . H f-b f=H(b . H f)+H\left(f . H^{\prime} b\right) \tag{1}
\end{equation*}
$$

2.2. Remarks. (i) In (1), b and $H^{\prime} b$ are defined modulo constants. When b and $H^{\prime} b$ are, respectively, replaced by $b+c_{1}, H^{\prime} b+c_{2}$, where c_{1}, c_{2} are constants, the same function $c_{2} H f-c_{1} f$ is added to both members of (1). Thus, identity (1) holds a.e. whatever the choice of the constants c_{1}, c_{2} may be.
(ii) As a corollary of (1), we obtain the inverse identity $b . H f+f . H^{\prime} b=-H\left(H^{\prime} b . H f-f b\right)$ a.e., by replacing b by $H^{\prime} b$ or f by $H f$.

Proof of Theorem 2.1. We first suppose that $\varphi \in \mathscr{S}$ or $\varphi \in L_{c}^{p}$, for some $1<p<\infty$, and $b \in B M O$. By [2], we have

$$
\varphi \cdot H \Psi+\Psi \cdot H \varphi=-H(H \varphi \cdot H \Psi-\varphi \Psi), \quad \forall \Psi \in \mathscr{S}
$$

Thus,

$$
\begin{aligned}
{ }_{B M O} & \langle b, \varphi \cdot H \Psi+\Psi \cdot H \varphi\rangle_{H^{1}} \\
& =-{ }_{B M O}\langle b, H(H \varphi \cdot H \Psi-\varphi \Psi)\rangle_{H^{\prime}} \\
& ={ }_{B M O}\left\langle H^{\prime} b, H \varphi \cdot H \Psi-\varphi \Psi\right\rangle_{H^{1}} \\
& \stackrel{(\times)}{=}{ }_{w L^{1}}\left\langle H \varphi \cdot H^{\prime} b, H \Psi\right\rangle_{W^{-1}}-\mathscr{S}^{\prime}\left\langle\varphi \cdot H^{\prime} b, \Psi\right\rangle_{\mathscr{F}} \\
& =-{ }_{\mathscr{S}}{ }^{\prime}\left\langle\mathscr{H}\left(H \varphi \cdot H^{\prime} b\right)+\varphi \cdot H^{\prime} b, \Psi\right\rangle_{\mathscr{H}}, \quad \forall \Psi \in \mathscr{S},
\end{aligned}
$$

where (\times) is justified by the fact that $|H \varphi(x)| \leqslant c|x|^{-1}$ as $|x| \rightarrow \infty$ when $\varphi \in \mathscr{S}$ or L_{c}^{p}.

On the other hand,

$$
\begin{align*}
& { }_{B M O}\langle b, \varphi \cdot H \Psi+\Psi \cdot H \varphi\rangle_{H^{1}}={ }_{w L^{1}}\langle\varphi b, H \Psi\rangle_{w^{-1}, B}+{ }_{\mathscr{F}}\langle b \cdot H \varphi, \Psi\rangle_{\mathscr{H}} \\
& ={ }_{\mathscr{H}}\langle-\mathscr{H}(\varphi b)+b \cdot H \varphi, \Psi\rangle_{\mathscr{H}}, \quad \forall \Psi \in \mathscr{S} . \tag{2}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
\varphi \cdot H^{\prime} b+b \cdot H \varphi=-\mathscr{H}\left(H \varphi \cdot H^{\prime} b\right)+\mathscr{H}(\varphi b) \tag{3}
\end{equation*}
$$

holds in \mathscr{S}^{\prime}, or, which is equivalent,

$$
\begin{equation*}
[M(b), \mathscr{H}] \varphi=\left[M\left(H^{\prime} b\right), \mathscr{H}\right](H \varphi) \tag{4}
\end{equation*}
$$

in \mathscr{P}^{\prime}.
Now, for $1 / p+1 / q=1$, we have by [2],

$$
\begin{aligned}
\|\varphi \cdot H \Psi+\Psi \cdot H \varphi\|_{H^{1}} & =\|\varphi \cdot H \Psi+\Psi \cdot H \varphi\|_{L^{1}}+\|H \varphi \cdot H \Psi-\varphi \Psi\|_{L^{1}} \\
& \leqslant c\|\varphi\|_{L^{p}}\|\Psi\|_{L^{g}}
\end{aligned}
$$

Thus, it results from (2) that $[M(b), \mathscr{H}] \varphi \in L^{p}$. Moreover, both commutators in (4) extend on L^{p}. For every $f \in L^{p}, 1<p<\infty$, we have

$$
\begin{equation*}
\left[\overline{M(b), \mathscr{H}]} f=\left[\overline{\left.M\left(H^{\prime} b\right), \mathscr{H}\right]}(H f) \text { in } L^{p}\right. \text { and a.e., }\right. \tag{5}
\end{equation*}
$$

and

$$
\|\overline{[M(b), \mathscr{H}]}\|_{p, p}=\left\|\overline{\left[M\left(H^{\prime} b\right), \mathscr{H}\right]}\right\|_{p, p} \leqslant c\|b\|_{B M O}
$$

where $\overline{[.]}$ denotes the closure of the operator.
Besides, $[M(b), \mathscr{H}]$ and $[M(b), H]$ coincide on $L_{c}^{p}, 1<p<\infty$. Indeed, $b \in L_{\text {loc }}^{r}$, for every $1<r<\infty$, and thus $b \varphi \in L^{s}$ when $1 / r+1 / p=1 / s<1$ which implies $H(b \varphi)=\mathscr{H}(b \varphi)$ a.e. Furthermore, by [3], we know that
[$M(b), H]$ is bounded from L^{p} into $L^{p}, 1<p<x$. Consequently, (5) can be written as $[M(b), H] f=\left[M\left(H^{\prime} b\right), H\right](H f)$ a.e., $\forall f \in L^{p}, \quad 1<p<x$. which is an alternative formulation of the thesis.

Further Remarks. (1) Both members of (3) belong to $\left(1+x^{2}\right)^{1 / 2} L^{1}$. By replacing b by $H^{\prime} b$, we also have, for $b \in B M O, \varphi \in \mathscr{F}$ or $L_{c}^{p}, 1<p<\infty$,

$$
H^{\prime} b \cdot H \varphi-b \varphi=\mathscr{H}\left(\varphi H^{\prime} b+b H \varphi\right),
$$

which proves that $\mathscr{H}^{2}=-I$ on the subspace

$$
\left\{b H \varphi+\varphi \cdot H^{\prime} b: b \in B M O, \varphi \in \mathscr{P} \text { or } L_{c}^{p}, 1<p<\infty\right\} \text { of }\left(1+x^{2}\right)^{1 / 2} L^{1}
$$

(2) The following pointwise approximations can be deduced from the proof of theorem 2.1:

$$
\begin{aligned}
H(f b) & =\lim \mathscr{H}\left(\varphi_{k_{j}} b\right) \text { a.e. } \\
H\left(H f . H^{\prime} b\right) & =\lim \mathscr{H}\left(H \varphi_{k_{j}} H^{\prime} b\right) \text { a.e., }
\end{aligned}
$$

for every $b \in B M O, f \in L^{p}, 1<p<\infty$, where $\varphi_{k_{j}}$ is a suitable subsequence of $\varphi_{k} \in L_{c}^{p}, \varphi_{k}$ tending to f in L^{p}.

References

1. P. L. Butzer and R. J. Nessel. "Fourier Analysis and Approximation," Vol. I, Birkhäuser, Basel/Academic Press, New York, 1971.
2. C. Carton-Lebrun, Product properties of Hilbert transforms, J. Approx. Theory 21 (1977) (4), 356-360.
3. R. R. Coifman, R. Rochberg, and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976) (3), 611-635.
4. L. Schwartz, Causalité et analyticité, An. Acad. Brasil. Ciênc. 34 (1962), 13-21.
